Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping) information of buildings is highly needed for urban planning and management as well as other applications such as city-scale building energy use modeling. Due to the limited availability of socio-economic geospatial data, it is more challenging to map building functions than building morphological information, especially over large areas. In this study, we proposed an integrated framework to map building functions in 50 U.S. cities by integrating multi-source web-based geospatial data. First, a web crawler was developed to extract Points of Interest (POIs) from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM was used to identify residential buildings based on landscape features derived from Microsoft building footprints. Third, the type ratio of POIs and the area ratio of land use parcels were used to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office). The accuracy assessment indicates that the proposed framework performed well, with an average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities over the world. The data products generated from this study are of great use for quantitative city-scale urban studies, such as building energy use modeling at the single building level over large areas.more » « less
- 
            Information on urban built-up infrastructure is essential to understand the role of cities in shaping environmental, economic, and social outcomes. The lack of data on built-up heights over large areas has limited our ability to characterize urban infrastructure and its spatial variations across the world. Here, we developed a global atlas of urban built-up heights circa 2015 at 500-m resolution from the Sentinel-1 Ground Range Detected satellite data. Results show extreme gaps in per capita urban built-up infrastructure in the Global South compared with the global average, and even larger gaps compared with the average levels in the Global North. Per capita urban built-up infrastructures in some countries in the Global North are more than 30 times higher than those in the Global South. The results also show that the built-up infrastructure in 45 countries in the Global North combined, with ∼16% of the global population, is roughly equivalent to that of 114 countries in the Global South, with ∼74% of the global population. The inequality in urban built-up infrastructure, as measured by an inequality index, is large in most countries, but the largest in the Global South compared with the Global North. Our analysis reveals the scale of infrastructure demand in the Global South that is required in order to meet sustainable development goals.more » « less
- 
            Agriculture is a major water user, especially in dry and drought-prone areas that rely on irrigation to support agricultural production. In recent years, the over-extraction of groundwater, exacerbated by climate change, population growth, and intensive agricultural irrigation, has led to a drop in water levels and influenced the hydrological cycle. Understanding changes in hydrological processes is essential for pursuing water sustainability. This study aims to estimate the amount and impact of irrigation on hydrological processes in two breadbasket regions, Jing-Jin-Ji (JJJ), China, and northern Texas (NTX), US. We used the Soil and Water Assessment Tool (SWAT) to explore spatiotemporal variations of irrigation from 2008 to 2013 and compared changes in hydrological processes caused by irrigation. The results indicated that deficit irrigation is more common in JJJ than in NTX and can reduce approximately 50 % of irrigation water use in areas with intensively irrigated cropland. The applied irrigation varies less over time in NTX but fluctuates in JJJ. Compared with NTX, the higher irrigation intensity in JJJ results in a more significant change in downstream peak streamflow of around 6 m3/s. Moreover, the difference in crop growing seasons can lead to different impacts of irrigation on hydrological processes. For example, the percentage change of surface runoff under real-world relative to the no-irrigation scenario was the greatest, around 40 %, in JJJ and NTX. However, the peak change occurred at different times, with the nearing maturity of winter wheat in May in JJJ and corn in August in NTX. The great potential to reduce groundwater extraction by adopting water conservation irrigation techniques calls for policies and regulations to help farmers shift towards more sustainable water management practices.more » « less
- 
            Abstract. Land surface temperature (LST) is one of the most important and widely used parameters for studying land surface processes. Moderate ResolutionImaging Spectroradiometer (MODIS) LST products (e.g., MOD11A1 and MYD11A1) can provide this information with moderate spatiotemporal resolution withglobal coverage. However, the applications of these data are hampered because of missing values caused by factors such as cloud contamination,indicating the necessity to produce a seamless global MODIS-like LST dataset, which is still not available. In this study, we used a spatiotemporalgap-filling framework to generate a seamless global 1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 2003 to 2020based on standard MODIS LST products. The method includes two steps: (1) data pre-processing and (2) spatiotemporal fitting. In the datapre-processing, we filtered pixels with low data quality and filled gaps using the observed LST at another three time points of the same day. In thespatiotemporal fitting, first we fitted the temporal trend (overall mean) of observations based on the day of year (independent variable) in eachpixel using the smoothing spline function. Then we spatiotemporally interpolated residuals between observations and overall mean values for eachday. Finally, we estimated missing values of LST by adding the overall mean and interpolated residuals. The results show that the missing values inthe original MODIS LST were effectively and efficiently filled with reduced computational cost, and there is no obvious block effect caused by largeareas of missing values, especially near the boundary of tiles, which might exist in other seamless LST datasets. The cross-validation withdifferent missing rates at the global scale indicates that the gap-filled LST data have high accuracies with the average root mean squared error(RMSE) of 1.88 and 1.33∘, respectively, for mid-daytime (13:30) and mid-nighttime (01:30). The seamless global daily (mid-daytime andmid-nighttime) LST dataset at a 1 km spatial resolution is of great use in global studies of urban systems, climate research and modeling,and terrestrial ecosystem studies. The data are available at Iowa State University's DataShare at https://doi.org/10.25380/iastate.c.5078492 (T. Zhanget al., 2021).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
